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Abstract— Signals derived from brain activity can be used
as commands to control an external device or application in
Brain-Computer Interface (BCI) systems. Electroencephalog-
raphy (EEG) is widely used to record brain signals due to its
non-invasive nature, relatively low-cost, and high temporal res-
olution. BCI performance depends on choices regarding avail-
able options for signal pre-processing, classifiers, and feature
extraction techniques. In this paper, we describe the use of an
Artificial Neural Network (ANN) based on a Multilayer Percep-
tron (MLP) architecture as a classifier to identify motor imagery
tasks using EEG signals from nine subjects of an experimental
data set. BCIs based on brain signals recorded during motor
imagery tasks use the changes in amplitude of specific cortical
bands as features. Moreover, we evaluated the effect of system-
atically decreasing the number of inputs (EEG channels) on the
classifier performance. The results show that a MLP classifier
was able to segregate the EEG signature of four motor imagery
tasks with at least 70% accuracy using at least 12 EEG channels.
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I. INTRODUCTION

Motor Imagery is a mental task in which subjects imag-
ines themselves performing motor actions without actually
moving their body. This type of imagery activates the same
cortical motor areas as during the performance of real move-
ment (cortical activation) [1]. Electroencephalography (EEG)
signals recorded during motor imagery tasks can be used to
implement brain-computer interfaces, as well as for motor re-
habilitation protocols [2].

During motor imagery, Event-Related Desynchronization
(ERD) and Event-Related Synchronization (ERS) can be ob-
served in the mu (8−12 Hz) and beta rhythms (13−30 Hz) of
the EEG signal [3]. The mu rhythm is related to alpha activ-
ity over the sensorimotor cortex. Desynchronization indicates
suppression of oscillatory activity (energy decreases) in a par-
ticular frequency band whereas the synchronization refers to
an increase of oscillatory activity. These changes in the am-
plitude of specific EEG bands have been used as input for
Brain-Computer Interface (BCI) systems [4, 5]. In additional
to mu and beta, previous works have also included the delta

rhythm (0.5−4 Hz) [6].
The elicited ERD/ERS patterns are topographically orga-

nized along the cortical surface. Hence, BCI-related motor
imagery usually includes limb and tongue movements, due to
the fact that these movements engage relatively large cortical
areas and are easier to be isolated with surface EEG elec-
trodes [7]. In particular, the pattern of brain activation during
motor imagery of hand movements is lateralized: motor im-
agery of the left (right) hand causes ERD (ERS) in the right
(left) sensorimotor cortex, and vice-versa. Thus, the motor
imagery of hand movements can be associated with corre-
sponding increase/decrease of EEG energy in the C4/C3 elec-
trodes, which are usually localized over the regions represent-
ing hand movements in the sensorimotor cortex [3].

This study investigates the performance of a Multilayer
Perceptron (MLP) Artificial Neural Network (ANN) built
with 15 neurons in its hidden layer during the classification
of four motor imagery tasks: movements of the left hand,
the right hand, the feet, and the tongue. In order to test the
classifier, we used data of nine subjects obtained from data
set A of the BCI Competition IV. The feature We extracted
from the dataset was the individual subject’s average power
of the mu/alpha and beta EEg frequency ranges using peri-
odogram as the spectral estimation method and the Wavelet
Energy Spectrum (WES).

We performed three simulations using features extracted
from mu, beta, and a combination of both frequency ranges.
Also, in order to investigate strategies to reduce computa-
tional cost and system complexity, we systematically reduced
the number of channel inputs while measuring the effect on
performance accuracy [6].

II. MATERIALS AND METHODS

A. Features extraction

In EEG analysis, power spectral density (PSD) is usu-
ally calculated separately for each standard range (e.g. delta,
theta, alpha, mu, beta, and gamma) (V 2/Hz) [8].

The periodogram estimates the PSD using the squared-
magnitude of the Discrete-Time Fourier Transform (DTFT)
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where Px (ω) is the PSD, N represents the total number of
samples of the EEG signal x[n] from one channel, and ω is
the frequency −π < ω < π . The Fast Fourier Transform al-
gorithm is used to compute DTFT and, as a result, the peri-
odogram [9]. The use of an appropriate window function can
reduce smearing and leakage effects.Considering a window
function W of length L, the xW [n] = W [n]x[n] represents a
windowed data segment from the EEG signal x[n]. Thus, the
periodogram (1) of this segment is:
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Previous studies indicate that for the spectral analysis of
biomedical signals, the most appropriate windows are the
rectangular and Hanning [10]. In thw present work, we used a
Hanning window of length 250 to compute the periodogram
of each data segment, with a bin size of 100 ms (25 samples).

By integrating the PSD within a frequency range, we can
obtain the average power contained in this frequency inter-
val. In the present work, the area under the curve of the PSD
of mu/alpha/beta rhythms is decomposed into rectangles to
calculate the approximate integral, i.e., the average power of
each band.

In addition to average power, we calculated the WES with
a Discrete Wavelet Transform (DWT) implementation, which
decomposes a signal into multi-levels j = 1,2, ...J with re-
spective frequency components and is used especially in EEG
signals due to its non-stationary and non-linear characteristics
[11]. The DWT is defined as:
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where x(t) is the signal captured at each EEG channel, ψ is
a wavelet function, and j is the decomposition level. In this
study is used the 4th order Daubechies wavelet (db4).

The DWT implementation developed by [12] involves the
use of Low-Pass (LP) and High-Pass (HP) filter pairs called
quadrature mirror filters. In the first step, the EEG signal
is subject to both LP and HP filters, with cut-off frequency
equal to one fourth of the sampling frequency Fs. This step re-
sults in the approximation (cA j) and detail (cD j) coefficients
of the first level ( j = 1). The same procedure can be repeated
until the desired decomposition level is reached.

The EEG signals used in the present work were sampled
with 250 Hz (Fs). Following the Nyquist Sampling Theorem
Fs ≥ 2Fmax, the maximum useful frequency is equal to half
of the sampling frequency, i.e., 125 Hz. Thus, as a result of
the DWT decomposition, we uncover a relationship between
the cD4 (7.8125− 15.625 Hz) wavelet components and the
mu/alpha rhythm and between the cD3 (15.625− 31.25 Hz)
coefficients and the beta rhythm

The WES at scale j and instant k (E jk) is the square of the
wavelet transform coefficients E jk = d2

jk, where d jk denotes
the approximation coefficient cA jk or detail coefficient cD jk.
The sum of each E jk composes the wavelet spectrum at scale j
to cA jk and cD jk. The WES for detail coefficients is described
below [13, 14]:
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N
2 j

∑
k=1

∣∣cD jk
∣∣2 (4)

In the present work, the WES of the cD3 and cD4 coef-
ficients are obtained with the sliding of the fixed time win-
dow [13]. This procedure allows following the variations in
wavelet energy over time [15]. Hence, given the wavelet co-
efficients:

D =
{

d jk,k = 1,2, ...,N; j = 1,2, ...,J
}

(5)

the sliding-window should be written as:

W (m;w,δ ) =
{

d jk,k = 1+mδ , ...,w+mδ
}

(6)

where 2 ≤ w ≤ N is the width of window, 1 ≤ δ ≤ N is the
sliding factor, and m = 0,1,2, ...,M; M = (N−w)/δ is the
number of sliding steps [16, 17]. We used the moving window
parameters w = 33 and δ = 1 to calculate the wavelet energy
of the cD3 and cD4 coefficients.

B. Experimental design

We used the data set from the fourth edition of the BCI
Competition provided by the University of Graz. This data
set consists of EEG signals from 9 healthy subjects perform-
ing motor imagery tasks. The signals were sampled with 250
Hz and the electrodes were placed according to the Interna-
tional 10-20 System. Each subject, designated here as Sub1,
Sub2,..., Sub9, performed four different imagery tasks: move-
ment of the left hand (Class 1), right hand (Class 2), feet
(Class 3), and tongue (Class 4). Two sessions were performed
on different days. Each session has 6 runs composed by 48
trials (12 trials per class) and each run is separated by short
breaks. The experimental paradigm is represented in Figure 1
[18].



Fig. 1: Experimental Paradigm

As observed in Figure 1, at t = 0s, i.e., at the beginning
of the trial, a fixation cross is exhibited on a computer screen
together with a short acoustic warning (beep). After two sec-
onds (t = 2s) a cue in the form of an arrow appears, indicat-
ing the motor imagery task: pointing to the left (class 1), right
(class 2), down (class 3) or up (class 4). The cue remained on
the screen for 1.25s. The subject should carry out the task un-
til t = 6s, when the fixation cross disappeared. At the end of
each trial there is a short break.

C. Topology, training, and evaluation of MLP

The MLP used in this study has two layers, i.e., a hidden
layer and an output layer and the number of neurons in each
layer is 15 and 4, respectively. The number of hidden neurons
(15) was chosen in an optimization process aiming at mini-
mizing both the time required for training and the complexity
of the classifier, while increasing the accuracy obtained us-
ing all channels. In the output layer, class 1 is represented as
[1 0 0 0]T , class 2 as [0 1 0 0]T , class 3 as [0 0 1 0]T , and class
4 as [0 0 0 1]T . The training algorithm was the Levenberg-
Marquadt Backpropagation [19].

The classification accuracy was evaluated in three sce-
narios: simulation with features extracted from the mu/alpha
rhythm, the beta rhythm, and from both rhythms. A total of
five experiments were performed in each scenario with 70%
of the data randomly reserved for training and 30% to vali-
dation. In addition, the number of EEG channels (n) used as
input was systematically reduced in order to analyze the ac-
curacy with low input complexity. The channels selected are
detailed below:

• 22 Channels: Fz, FC3, FC1, FCz, FC2, FC4, C5, C3, C1,
Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4, P1, Pz, P2,
and POz.
• 18 Channels: Fz, FC3, FC1, FCz, FC2, FC4, C5, C3, C1,

Cz, C2, C4, C6, CP3, CP1, CPz, CP2, and CP4.
• 16 Channels: Fz, FC3, FC4, C3, C1, Cz, C2, C4, CP3,

CP1, CP2, CP4, P1, Pz, P2, and POz.
• 14 Channels: Fz, FC1, FCz, FC2, C5, C3, C1, Cz, C2,

C4, C6, CP1, CPz, and CP2.
• 12 Channels: FC3, FC4, C5, C3, Cz, C4, C6, CP3, CPz,

CP4, P1, and P2.
• 10 Channels: Fz, FCz, C5, C3, C1, Cz, C2, C4, C6, and

CPz.
• 8 Channels: Fz, C3, C1, Cz, C2, C4, CPz, and Pz.

The features extracted from those channels, as described
in section II, are the WES and the average power in the
mu/alpha and beta bands, which were included in the fea-
ture vector for each EEG channel. Hence, each subject is as-
sociated with four feature matrices for each class, with the
same number of samples: the average power matrix in the mu
band (1562×22), the average power matrix in the beta band
(1562× 22), the WES matrix corresponding to the mu band
(1562× 22), and the WES matrix corresponding to the beta
band (1562×22).

Since during the training stage the system is biased to the
influence of features with larger values, the features are nor-
malized along the range [0,1] with softmax activation func-
tion in both layers of the neural network. In order to evaluate
classification performance, the accuracy is calculated based
on information from the confusion matrix, given by:

Ac =

(
TN +TP

TN +TP +FN +FP

)
×100 (7)

where TN is the number of true negatives, TP of the true pos-
itives, FN of the false negatives, and FP of the false positives.
An accuracy higher than 70% is suggested for BCI applica-
tions [20].

III. RESULTS AND DISCUSSION

In the present work, we used an MLP neural network to
classify four types of motor imagery performed by 9 subjects
based on spectral estimation and WES. Figure 2 and 3 shown
the features extracted before and during motor imagery (MI),
considering C3 channel for average band power and C4 chan-
nel for WES, of the subject 5.

Analyzing the results of each simulation, it is possible to
see that the ANN reaches significant performance using only
the mu/alpha frequency (up to 94.06± 1.37 using all elec-
trodes), as can see in Table 1. Also, the minimum number of
channels needed to obtain at least 70% accuracy was at least
12 channels for simulations considering separately mu and
beta rhythms (Tables 1 and 2), and at least 14 channels for
simulation using the features vector in both rhythms (Table
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Fig. 2: Normalized average power in the mu/alpha and beta bands of the Subject 5
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Fig. 3: Normalized WES in the mu/alpha (cD4) and beta (cD3) bands of the Subject 5

3). Therefore, the level of classification accuracy using alpha
or beta reaches higher values than the use of the two rhythms
together and enables a reduction of at least 10 EEG channels.

Furthermore, comparing the simulations results using
mu/alpha rhythm and the simulations using beta rhythm, for

n = 22, we found a greater classification accuracy for fea-
tures extracted in the alpha band than for beta band, for most
subjects, indicating differences in the degree of desynchro-
nization of sensorimotor rhythms.

Other similar studies with ANN includes the use of aver-



age power and wavelet energy spectrum, such as [21], which
report accuracy equal to 77.1429% using average power and
83.5714% using WES, for two classes of motor imagery. In
additional, [6] achieved 80± 10 of accuracy using ANN for
classification of two classes of motor imagery, and after filtra-
tion and analysis of channel reduction, the accuracy enhances
to 90±5 using 8 electrodes.

IV. CONCLUSION

This paper presented a study about the use of MLP to clas-
sify EEG signals based on motor imagery tasks, using fea-
tures that can identify the energy modulation that occurs dur-
ing this type of mental activity. The technique involves the
average power, derived from the periodogram method, and
the windowed wavelet energy spectrum, in order to charac-
terize the ERD/ERS during four motor imagery tasks. It is
possible to conclude that, using the BCI data set, the imple-
mentation of a MLP for classification tasks with 15 hidden
neurons and two layers has enough accuracy using all 22 elec-
trodes. Moreover, the channel reduction analysis performed
has shown the possibility to use fewer EEG channels than
available, maintaining enough accuracy.
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Table 1: Average accuracy for MLP using features extracted within mu frequency range.

Subject n = 22 n = 18 n = 16 n = 14 n = 12 n = 10 n = 8

Sub1 91.96±0.28 78.24±1.85 78.78±3.64 76.25±0.96 77.07±3.13 69.57±0.86 59.99±1.44

Sub2 93.16±1.09 81.90±1.96 82.35±1.61 80.79±0.88 75.72±0.93 69.33±1.00 63.34±1.54

Sub3 95.19±0.34 80.36±1.60 88.25±4.56 82.65±1.67 71.79±1.38 69.64±0.93 69.54±1.78

Sub4 94.62±0.23 86.03±1.01 78.52±1.45 82.19±1.60 76.33±0.95 70.49±1.29 72.02±0.61

Sub5 94.95±0.51 85.62±1.29 79.08±1.53 81.43±1.62 75.50±1.75 70.11±1.42 72.08±1.36

Sub6 95.04±1.08 90.49±0.87 81.64±1.25 82.40±2.37 76.21±1.58 74.69±0.25 65.50±2.16

Sub7 95.05±0.40 79.44±1.06 87.50±0.82 80.81±1.86 73.96±1.57 72.86±3.28 70.12±0.83

Sub8 94.79±0.58 82.47±2.71 83.17±1.21 84.33±0.45 78.20±1.23 79.40±2.68 70.15±1.96

Sub9 91.82±1.03 82.24±2.67 81.52±3.17 73.89±2.03 58.27±1.40 63.25±1.95 61.70±1.03

µ±σ 94.06±1.37 82.98±3.82 82.31±3.56 80.53±3.33 73.67±6.06 71.04±4.41 67.16±4.61

Table 2: Average accuracy for MLP using features extracted within beta frequency range.

Subject n = 22 n = 18 n = 16 n = 14 n = 12 n = 10 n = 8

Sub1 95.66±0.29 91.34±2.38 85.62±0.91 88.84±0.99 78.14±1.16 72.38±2.53 68.98±1.85

Sub2 93.00±0.75 81.23±0.88 80.36±2.46 73.28±3.13 68.85±0.71 67.78±1.61 63.47±0.60

Sub3 87.54±2.54 78.49±2.82 77.03±1.82 73.68±2.32 69.14±1.55 64.46±2.89 64.52±1.13

Sub4 97.00±0.19 93.78±0.52 86.12±4.41 82.94±2.57 78.57±2.60 73.72±3.63 66.45±1.37

Sub5 96.30±0.90 82.74±9.36 86.66±4.24 80.66±1.07 78.78±1.26 74.64±2.75 66.70±2.52

Sub6 92.03±1.61 77.00±0.47 85.72±1.90 75.53±3.16 70.43±0.81 68.22±0.71 63.30±1.18

Sub7 92.32±2.06 79.53±2.52 81.42±2.93 72.71±1.68 75.18±1.66 66.32±1.95 63.56±3.49

Sub8 89.02±0.84 79.17±1.37 74.52±1.46 63.35±2.28 69.77±1.87 59.06±1.33 54.50±0.33

Sub9 86.85±1.26 80.68±1.39 78.19±1.30 79.97±1.06 72.00±0.96 70.91±1.08 70.20±1.11

µ±σ 92.19±3.76 82.66±5.88 81.74±4.52 76.46±6.97 73.43±4.24 68.61±4.96 64.63±4.53

Table 3: Average accuracy for MLP using features extracted within mu and beta rhythms.

Subject n = 22 n = 18 n = 16 n = 14 n = 12 n = 10 n = 8

Sub1 89.59±0.70 77.95±2.24 71.72±1.39 77.03±0.47 71.61±1.29 63.10±1.01 58.35±0.60

Sub2 86.34±0.84 74.42±1.08 75.07±1.09 65.66±2.75 70.40±2.04 60.61±1.90 55.25±0.57

Sub3 87.55±1.09 70.11±3.57 69.45±2.57 66.98±0.97 62.61±2.93 61.04±1.46 65.10±0.87

Sub4 90.57±1.67 81.22±2.14 76.58±3.30 77.41±4.25 77.96±2.37 66.84±2.96 56.76±1.36

Sub5 91.78±1.00 81.66±1.91 76.07±1.51 79.43±2.25 70.87±1.81 64.70±3.65 57.95±0.75

Sub6 91.26±1.22 76.32±1.87 78.40±0.94 70.86±1.46 67.95±1.11 64.49±0.75 58.29±0.74

Sub7 90.91±0.43 74.50±1.17 81.01±1.37 71.74±1.24 71.71±1.38 67.30±1.20 62.15±2.02

Sub8 87.72±1.62 75.44±1.36 72.67±1.06 71.93±0.89 63.36±2.12 61.05±1.79 57.93±1.94

Sub9 85.08±0.89 76.87±1.07 72.16±1.81 66.89±0.97 60.34±1.66 63.89±0.80 55.78±2.26

µ±σ 88.98±2.38 76.50±3.56 74.79±3.64 71.99±5.03 68.53±5.55 63.67±2.46 58.62±3.13
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City: Belém
Country: Brazil
Email: shirley.ferreira@itec.ufpa.br


