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Abstract—This paper compares the Linear Quadratic Gaus-
sian (LQG) control method with the usage of swarm approaches
in control systems, using as basis a paper that uses a mathemat-
ical model of an artificial ventilation system. The intent of this
article is also to call attention to the good practices in control
systems design, sometimes neglected by the researchers who seek
to contribute to the field, but lack an appropriate theoretical
background. In the presented case study, the classical LQG
control shows equivalent result regarding the stability margins
and temporal response when compared to a Proportional-
Integral-Derivative (PID) controller that is tuned by three dif-
ferent swarm algorithms: Particle Swarm Optimization (PSO),
Class Topper Optimization (CTO) and Constricted Class Topper
Optimization (C-CTO). When the control signal is evaluated,
the LQG controller clearly outperforms the other controllers.
Final comments are made regarding some peculiarities of the
basis paper and suggesting some orientations to better apply
the presented swarm approaches and other nature-inspired
optimization techniques in control systems design.

Index Terms—Control systems, LQG control, computational
intelligence, artificial ventilation

I. INTRODUCTION

Nature-inspired algorithms are being widely applied in
control systems design. A quick search for scientific papers
involving this topic can lead to the application of algorithms
such as particle swarm optimization [1]–[6]; grey wolf op-
timizer [7]–[9]; and genetic algorithms [10]–[15], among
others.

These algorithms, although very useful in a vast set of
scenarios, can not be seen as “panacea” for all the control
design problems, and must always be compared with well-
established control techniques. The main problems that can
be verified in some scientific papers that seek to apply the
mentioned algorithms in control engineering are the absence
of the control signal, the main product of a control system
design [1], [3], [5], [6], [8], [13], [14]; and the lack of
a discussion involving stability margins [1], [4], [5], [13],
[15]. This information is essential from a control engineering
point of view, in order to evaluate the real applicability of a

presented technique. If the control signal is not physically
achievable, has abrupt changes that can damage the system
being controlled and/or the closed-loop system has narrow
stability margins, then the control system will be unfeasible.
To evaluate these points, it is necessary not only to understand
the system from a mathematical perspective, but from a
physical one.

A lot of papers applying the mentioned techniques to de-
sign control systems propose an algorithm capable of tuning,
in an optimal sense, the parameters of a Proportional-Integral-
Derivative (PID) control [1]–[3], [5], [6], [8]–[11], [13].
These papers do not compare their proposed systems with
the Linear Quadratic Gaussian (LQG) control, for example,
that is a well-established technique with rigorous stability
proofs and based on an optimization problem that takes into
account not only the speed of convergence of the output,
but also the energy spent in the process [16]. For a linear,
well-conditioned system, the LQG control method results in a
unique and optimal solution for a set of weighting matrices,
that should be defined based on engineering intuition and
knowledge of the proposed problem [17].

Both PID control tuned by nature-inspired algorithms, such
as the Swarm Intelligence (SI) ones, and LQG control seek
to achieve the same result: find an optimal solution to a
specific problem. Why not, then, compare them both, to prove
the benefits (or not) of these nature-inspired optimization
techniques? Based on this question, this paper proposes a
solution that uses the LQG method to control an artificial
ventilation system, described in [1] and [18], where the
authors of [1] proposed three SI-based techniques to tune
a PID: Particle Swarm Optimization (PSO), which is based
on the social behaviour of some species [19]; Class Topper
Optimization (CTO), based on the competitive behaviour of
students in a class [20]; and a modified Constricted Class
Topper Optimization (C-CTO), which includes a constriction
factor in the previous method, influencing the speed of

2021 14th IEEE International Conference on Industry Applications Tu2Track C.2

978-1-6654-4118-6/21/$31.00 ©2021 IEEE 640 ISBN 978-1-6654-4118-6

20
21

 1
4t

h 
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 In
du

st
ry

 A
pp

lic
at

io
ns

 (I
N

D
U

SC
O

N
) |

 9
78

-1
-6

65
4-

41
18

-6
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IN

D
U

SC
O

N
51

75
6.

20
21

.9
52

96
59

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO PARA. Downloaded on September 12,2021 at 15:06:17 UTC from IEEE Xplore.  Restrictions apply. 



convergence of the algortihm [1].
The name ”LQG” derives from the compensator’s struc-

ture, which uses the estimation generated by a Kalman filter
(also known as Linear Quadratic Estimator – LQE) and a
deterministic Linear Quadratic Regulator (LQR) [17]. The
LQG method results in a compensator structure that is defined
by the procedure itself, and there are few tuning parameters
that need to be used in the process, being a friendly design
approach to complicated Multi-Input Multi-Output (MIMO)
systems [21].

The layout of this paper is as follows. Section II describes
the artificial ventilation system and the control problem asso-
ciated with it. Section III presents the LQG control method,
providing some theoretical background and the step-by-step
design for the proposed problem. Section IV compares the
LQG compensator with the SI-based PID controllers. Finally,
section V presents some conclusions about the carried out
study.

II. SYSTEM MODELING AND PROBLEM DEFINITION

The mechanical ventilator is an electromedical equipment
that is used to provide an adequate gas exchange to a
patient that is not capable of doing it without assistance
[22]. One of the ventilation modes present in this type of
device is the Pressure-Controlled Ventilation (PCV). In PCV
mode, the pressure in the air-ways, Paw, must follow a
preset reference signal, with the signal being a square wave
where the maximum pressure value is the Positive Inspiratory
Pressure (PIP) and the minimum value is the Positive End-
Expiratory Pressure (PEEP) [18]. The PIP and PEEP values
are defined by the clinicians, being based on pathological and
physiological characteristics of the assisted patient.

The paper here analyzed [1] uses a simplified model to
describe the ventilator-patient system in PCV mode, that was
described in [18]. Basically, Paw is influenced by a piston
pump system that is actuated by an applied voltage Ua (in
the mechanical ventilator side) and the lung mechanics (in
the patient side). The lung mechanics are represented by
a first-order system, which considers the respiratory system
complacence and resistance in its model. The block diagram
of this dynamic system is shown in Fig. 1, with the physical
variables described in Table I.

From Fig. 1, it is possible to retrieve the following dynamic
equations:

Jeff ω̇ = −TL + Ψ
Ka

1 + Tas
Ua − Ψ2 Ka

1 + Tas
−KRω (1)

TL = KMA
2
piston

(
Rrs +

1

Crss

)
ż (2)

Using (1) and (2), it is possible to find the transfer function
from Ua to Paw. The parameters that were used in [1] to
simulate the ventilator-patient dynamics in PCV mode were:
Ka = 0.385 A/V , Ta = 9·e−5 seconds, Ψ = 2.96 N ·cm/A,
Jeff = 0.0035 N · cm · s2, Apiston = 1.65 dm2, KR =
0.005 N ·cm/rad, KG = 0.4 mm/rad, Rrs = 5 mbar ·s/L,
Crs = 50 mL/mbar and KM = 0.0398 cm.

Before proceeding, a note must be made. The dynamic
model presented in [1] uses the described parameters as they

TABLE I
MODEL PARAMETERS. ADAPTED FROM [1].

Parameter Physical meaning

Ua Applied voltage

Paw Air-ways pressure

Ka Gain of current control loop of piston-drive system

Ta
Time constant of current

control loop of piston-drive system

Ψ Field flux linkage

Jeff Moment of Inertia

Apiston Piston area

Ż Piston speed

Z Piston position

TL Load torque

KR Fricton coefficient

KG
Transmission constant

(motor revolutions to piston speed)

Rrs Resistance of the respiratory system

Crs Complacence of the respiratory system

ω Angular velocity of the motor

ω̇ Angular acceleration of the motor

KM Transfer ration from Paw to TL

are, that is, without correcting the parameters units. This
results in the following transfer function:

Paw (s)

Ua (s)
=

1074s+ 4.298

0.06064s3 + 4.841s2 + 1027s+ 0.2477
(3)

Equation (3) is an inconsistent dynamic model, since the
units does not match. This indicates that, possibly, a lot of
attention was given to the SI techniques, but not as much
to the modeling part and its validation. From a control engi-
neering perspective, the control system designer must always
study the system to be controlled, in order to model it in an
adequate way and, thus, properly control it. In the biomedical
engineering field, the modeling part is very critical, as the
designed system will interact with living people.

Since the controllers were designed for the wrong model,
this nullifies the results of [1] regarding the mechanical
ventilation system, but the techniques employed could still
be used if the correct model is considered in the design. To
show how the described mistake can considerably affect the
system dynamics, consider the corrected model (with Apiston

in cm2, KG in cm/rad and Crs in L/mbar):

Paw (s)

Ua (s)
=

1.074 · 104s+ 3.298 · 104

0.06064s3 + 3756s2 + 7.79 · 104s+ 2.477 · 105

(4)
A square-wave with a 2 seconds period and varying from

0 V to 1 V was applied as the input of (3) and (4), in order to
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Fig. 1. Block diagram showing the relationship between Ua and Paw , as described in [1], [18].

evaluate the dynamics in a scenario with a set-point change
(from PEEP to PIP and then PIP to PEEP, periodically). The
output of (3) is shown in Fig. 2, while the output of (4) is
shown in Fig. 3. It is possible to conclude that the problems
are entirely different: while [1] wrongly presents a system
with oscillatory response and a static gain greater than one,
the corrected system (with the correct units) presents a static
gain significantly lower than one and a behaviour that shows
no complex and conjugate poles.

Although an observation was made regarding the model
in study, the following sections will discuss the project of a
controller for the model described in (3), in order to have a
standard to compare the SI-based PID from [1] with the LQG
control method. The reader is advised to keep this information
in mind from now on, until the end of the paper reading.

The primarily project’s requirements that must be attended
by the LQG controller, in order to compare it to the SI-based
PID, were defined as:
• The system must track the square-wave input signal (a

1 V input must generate a 1 mbar output);
• It must have a null steady-state error;
• The oscillations in the system’s output must be damped,

with a maximum overshoot of 5%;
• The closed-loop performance must be compatible with

the open-loop’s speed response;
• The control signal must not contain any type of spikes.
This requirements define the control problem and, thus, the

LQG controller can be designed, a process described in the
next section.

III. THE LQG CONTROL METHOD

A. Theoretical background

The LQG controller is synthesized with the connection of
two subsystems: the Linear Quadratic Regulator (LQR) and

Fig. 2. Response of the system presented in [1] when a square-wave is
applied at its input.

Linear Quadratic Estimator (LQE), also known as Kalman
Filter [17]. Consider the general structure of a linear system
described in state-space:

ẋ(t) = A · x(t) +B · u(t) (5)
y(t) = C · x(t) +D · u(t) (6)

The LQR problem can be formulated in terms of the states,
x (t), and the control signal, u (t), through the following cost
function [23]:

JLQR =
1

2

∫ ∞
0

[
xT (t)Qx (t) + uT (t)Ru (t)

]
dt (7)
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Fig. 3. Response of the (correct) system when a square-wave is applied at
its input.

In (7), QLQR and RLQR are weighting matrices, which
must be defined by the designer according to some engineer-
ing criteria. While QLQR weights the speed of convergence
of the states, RLQR weights the energy spent to control the
system (i.e., the control signal). The solution to this opti-
mization problem comes from the continuous-time Algebraic
Riccati Equation (CARE) [21]:

ATP + PA− PBR−1BTP +Q = 0 (8)

Matrix P is the solution to the CARE and also used to
calculate the optimal state-feedback, K:

K = R−1BTP (9)

The gain K is, then, the feedback gain that minimizes the
cost function JLQR in the LQR control problem.

In a state-space realization, usually one is not capable
of measuring all the states, since it would require a lot of
sensors to observe all these variables, and some of them may
not even have physical meaning. To solve this problem, a
Kalman Filter can be designed, which is capable of estimating
the unmeasured states through the measured ones [21]. The
Kalman Filter is the dual problem of the LQR, and can also
be designed using (7), (8) and (9), but with the substitution
of the matrices in the equation according to Table II [17]:

TABLE II
DUALITY BETWEEN THE LQR AND THE KALMAN FILTER

LQR A B Q R P K

Kalman Filter AT CT Qkf Rkf Pkf LT

Where Qkf and Rkf are weighting matrices for the
Kalman Filter problem and L is the optimal estimation gain.

If we analyze the system described by (3), it is possible
to observe that it does not have a natural integrator. For
the system to follow a step-like reference with null steady-
state error, an integrator must be included in the system [24].
This procedure, called “system augmentation”, is described
in next.

B. System augmentation by the addition of an integrator in
the input

Consider the following augmented state vector:

xa (t) =

[
y (t)
ẋ (t)

]
(10)

The state-space model presented in (5) and (6), considering
the augmented state-vector and D = 0, can be rewritten in
an augmented form as:

ẋa (t) =

[
0 C
0 A

]
· xa (t) +

[
0
B

]
· ua (t) (11)

ya (t) =
[

1 0
]
· xa (t) (12)

This augmentation procedure adds an integrator to the
input of the system, providing high gain at low frequencies
and null steady-state error in closed-loop [25]. It is important
to notice that the augmented control signal, ua (t), is the
temporal derivative of the original control signal, u (t):

ua (t) = u̇ (t) (13)

Although the input of the augmented system is ua (t), the
control signal will, in fact, be u (t). The matrices of the state-
space realization of (3) used in the augmentation procedure
are:

A =

 −79.84 −132.3 −0.1276
128 0 0
0 0.25 0

 (14)

B =

 16
0
0

 (15)

C =
[

0 8.652 0.1384
]

(16)
D = 0 (17)

Fig. 4 presents the frequency response of the studied
system before and after the augmentation. The additional
decay of 20 dB/decade in the magnitude response at low
frequencies and the 90◦ lag in the phase response of the
augmented system confirms that the integrator was success-
fully incorporated to the plant. Now, the system will have a
null steady-state error in closed-loop for step-like reference
signals.

C. LQR design

After the augmentation procedure, the next step is to design
the LQR. If the matrices Q and R are defined as identity
matrices, the LQR will show a balanced compromise between
performance and energy cost [21]. In the studied case, Q and
R were defined as:

Q =


10000 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

 (18)

R = 1 (19)

The first element of the first row of matrix Q was multi-
plied by a factor of 10000, in order to increase the speed of
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Fig. 4. Effects of the system’s augmentation.

convergence (this element is related to the first state-variable,
i.e., the output). That resulted in the following full state-
feedback gain:

K =
[

100 6.5889 6.7606 0.2327
]

(20)

For the system to track a unit step reference, the following
control law must be adopted [24]:

ua (t) = −K · xa (t) + k1 · yr (t) (21)

In (21), k1 is the first element of K (the gain regarding
the output variable) and yr (t) is the reference signal for the
output. For a control law like (21), the closed-loop state-
space representation of the augmented system with full-state
feedback is:

ẋa(t) = (Aa −BaK)xa(t) +Ba · k1 · yr(t) (22)

ya(t) =
[

1 0
]
· xa(t) (23)

Applying the reference square-wave signal to the system
input generated the output response shown in Fig. 5. The
output response presents an overshoot of 2%, and the system
takes 0.03 seconds to go from zero to one for the first time.

To evaluate the system robustness, the closed-loop gain and
phase margins were calculated, based on the peak values of
the sensitivity and complementary sensitivity curves, MS and
MT , respectively. The curves are shown in Fig. 6, and the
margins were calculated using the following equations [26]:

GMdB = 20 · log10

{
max

[(
MS

MS−1

)
,
(
1+ 1

MT

)]}
(24)

PM◦ =

(
180◦

π

)
· max

{[
2·sin−1

(
1

2·MS

)]
,
[
2·sin−1

(
1

2·MT

)]}
(25)

The usage of (24) and (25) results in a gain margin of
8.3 dB and a phase margin of 60◦. According to [21], this
system presents a good compromise between stability and

Fig. 5. Response of the closed-loop system with the LQR.

performance, since its margins are between 6 − 15 dB and
30◦ − 60◦.

The LQR presents good temporal response and good
stability margins, showing that an appropriate design has been
achieved. It is possible now to proceed to the Kalman Filter
design of the LQG compensator.

Fig. 6. Sensitivity and Complementary Sensitivity curves of the closed-loop
system with the LQR.

D. Kalman Filter design

To design the Kalman Filter, the weighting matrices were
defined as:

Qkf = 107 · I4x4 (26)

Rkf = 1 (27)

In (26), the high multiplicative factor was used to increase
the convergence of the estimation. These choices of Qkf and
Rkf resulted in the following estimation gain:

LT = 103 ·
[

3.1635 −0.1183 0.3905 3.1562
]

(28)
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To test the convergence of the filter’s estimation, a refer-
ence signal can be applied to the closed-loop equation of the
state observer [16]:

ˆ̇xa (t) = (Aa − LCa) x̂a (t) +Bau (t) + Lya (t) (29)
ŷa (t) = Cax̂a (t) (30)

Where the use of the hat symbol ( ·̂ ) denotes an estimation
of the quantity of interest. To test the state observer, the input
u (t) can be set to zero, in order to evaluate its behaviour
when having access only to the system output.

In Fig. 7, it is possible to see the output of the filter when
its input is the plant’s output, showing the good performance
of the estimation filter.

Fig. 7. Response of the Kalman Filter. A zoom was made in the first
transitory to highlight its performance.

The calculated gain and phase margins of the Kalman filter
were 6 dB and 60◦, being also a robust system according to
[21]. The sensitivity and complementary sensitivity curves of
the system are shown in Fig. 8:

Fig. 8. Sensitivity and Complementary Sensitivity curves of the Kalman
filter.

E. LQG compensator design

Now that the LQR and the Kalman filter were designed,
they can be interconnected to create the LQG controller.
It is interesting to notice that the LQR and Kalman filter
can be designed independently in order to obtain a LQG
compensator, respecting the separation principle [27]. The
closed-loop equations for both systems operating together are
[16]:

[
ẋa (t)
ˆ̇xa (t)

]
=

[
Aa −BaK
LCa Aa − LCa −BaK

] [
xa (t)
x̂a (t)

]
+

[
Ba · k1
Ba · k1

]
· r (t) (31)

y (t) =
[
Ca 0

] [ xa (t)
x̂a (t)

]
(32)

And the control law, based on the estimated states, is:

ua (t) = −Kx̂a (t) + k1 · r (t) (33)

The LQG compensator, in this case, obtained the same
temporal characteristics of the LQR, shown in Fig. 5. The
LQG system was also capable of retrieving the phase and gain
margins of the LQR and, thus, its robustness. The sensitivity
and complementary sensitivity curves of this system are the
same that were shown in Fig. 6.

IV. COMPARISON BETWEEN LQG AND SI-BASED PID
CONTROLLERS

With the LQG compensator designed, its output response
and control signal were compared to the three SI-based PID
controllers. All responses are shown in Fig. 9, where a zoom
in were made in order to compare the transitory response
characteristics. It is possible to conclude that the LQG system
presented a higher rising time when compared to the SI-based
PID controllers, but in terms of the ventilator-patient system,
this difference (of about 0.02 seconds) is neglectable. All
systems presented an overshoot less than 10%, with the LQG
controller being the system with minimal overshoot. Thus, all
systems are comparable in respect to the closed-loop system’s
output.

In Fig. 10, the control signals of all four controllers are
presented. The control signal of the SI-based controllers were
not shown in [1], but could be plotted since the parameters
of the PID were given. All the SI-based PID controllers
presented high spikes in their control signal, which is an
undesirable characteristic. That is caused by the derivative
action of the PID controllers, which derivates the reference
signal at the set-point changes, causing the spikes known
as derivative kicks [28]. In a practical scenario, this kind of
behaviour can damage the motor of the piston pump in the
mechanical ventilator system, shortening its life cycle.

The phase and gain margins were also calculated for each
system, as shown in Table III. All systems presented good
stability margins according to the intervals presented in [21].

In order to quantify the performance of the controllers,
the Integral Squared Error (ISE) and the Integral Squared
of the Control Signal (ISU) were calculated. The indexes
were obtained using a discrete approximation of the Integral
Squared Signal (ISS), given by [29]:
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ISS =
∑(

wTw
)
· Ts (34)

In (34), w is an arbitrary signal and Ts is the sampling time
used for the simulation of the systems. When w is the error
signal, ISS becomes ISE, and when w becomes the control
signal, ISS becomes ISU. The calculated values are shown in
Table IV and the Ts used during the simulation was 0.001 s.

The values shown in Table IV confirm that the the PID
controllers designed in [1] use a lot more energy than the
LQG controller, but without a significant improvement.

Fig. 9. Response of the closed-loop systems for the reference signal.

Fig. 10. Comparison between the control signals.

V. CONCLUSIONS

This paper compared a LQG controller with three SI-based
PID controllers designed for a mechanical ventilation system.
It was possible to conclude that the controllers presented in
[1] had a similar performance regarding the output signal
characteristics when compared to the LQG compensator. All

TABLE III
PHASE AND GAIN MARGINS OF THE STUDIED CONTROLLERS

Controller Gain Margin (dB) Phase margin (degrees)

PID PSO 16.5 dB 51.4◦

PID CTO 12.2 dB 44.5◦

PID C-CTO 14.7 dB 48.7◦

LQG 8.3 dB 60◦

TABLE IV
ISE AND ISU FOR EACH CONTROLLER

Controller ISE ISU

PID PSO 0.0157 363.5991

PID CTO 0.0151 344.1776

PID C-CTO 0.0154 356.2718

LQG 0.0542 1.7965

controllers had good stability margins, but the control signal
of the PID controllers suffered with spikes that could damage
the electromedical equipment. Since the LQG controller
signal was smoother, did not had any spikes and presented a
significant lower ISU, the LQG compensator was considered
more adequate to the studied problem.

In [1], the PID controller is presented in its ideal form,
which, sometimes, is not even physically achievable and suf-
fers from the derivative kick effect. A more reliable approach
would be to consider the PID structure with a derivative filter,
in order to limit the derivative action through a more limited
frequency bandwidth [26]. The derivative action could be,
also, approximated by a lead-lag term, in order to define
where this effect should start and stop.

Another interesting topic to point out in [1] is that the
objective function to be minimized by the swarm approaches
is based only on the absolute error of the output over time.
The LQG, on the other hand, considers both the output error
and the control signal in its cost function, resulting in a
more well-conditioned problem. If the swarm algorithms used
a modified objective function, considering also the control
effort, the controllers would probably use less energy to
move the system’s output (since the control effort would
also be minimized). This way, the PID controllers would be
compared more ”fairly” with the LQG controller, since both
would be based on similar minimization problems.

To conclude, it is important to highlight that the most
problematic issues of [1] are regarding the control engineer-
ing and biomedical engineering areas. From the biomedical
engineering point of view, the dynamic model is not described
properly. Good knowledge about the model can lead the
engineer to other types of designs for the control system,
which could include an uncertainty in the respiratory system
parameters and the application of adaptive, stochastic and
robust control techniques. From the control engineering per-
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spective, the problem was formulated ignoring the energy cost
of the control signal, which is a critical issue when designing
control systems. The SI techniques and other nature-inspired
algorithms can and should be applied in control system
design, but the designers must validate their studies and
projects using pertinent and well consolidated evaluations,
presented in classical papers of control systems engineering.
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