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∗∗Núcleo de P&D em Telecomunicações, Automação e Eletrônica,
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Abstract: Assuming an imminent futuristic scenario, of 5G-and-Beyond communications
networks, where different classes of autonomous unmanned aerial vehicles will use guidance,
navigation and control systems relying on the network’s performance, in this paper we investigate
the delay and packet loss effects which may lead to closed-loop stability margins degradation of
such aerial vehicles, causing accidents. The use of state observers can minimize these adverse
effects by allowing these control systems to receive estimated data whenever sensor data is
delayed or lost. In this sense, we propose the assessment of a Smith predictor-based self-
tuning control applied to a 6-DOF model of a network-controlled quadrotor. The investigation is
focused on Proportional-Integral-Derivative control due to its solid acceptance as a trustworthy
industrial technique. Simulations and robustness indices indicates that the investigated control
approach can guarantee the robust stability of such aerial systems within the considered scenario.

Keywords: UAV, Smith predictor, adaptive control, mobile-enabled UAV control.

1. INTRODUCTION

In this work we focus on a particular problem in au-
tonomous guidance of aerial vehicles: the network latency
and packet loss influence on the closed-loop control dynam-
ics for an ever-increasing number of vehicles in a futuristic
urban air mobility network.

Unmanned aerial vehicles (UAV) of the quadrotor type,
commonly known as drones, are being commercialized
for entertainment activities and are increasing the aerial
space occupation in populated zones. Also, the prospects
for Beyond-visual-line-of-sight urban air mobility services,
flying UAVs over futuristic smart cities, are coming to
reality (GSMA, 2019). Such a situation requires UAVs
with a strong degree of automation in order to avoid or
at least minimize possible accidents, depending on several
well known flight control systems on board the aircraft.
However, the increasing number of UAVs is being accom-
panied by the development of 5G-and-Beyond communi-
cations networks. Thus, it is expected that, in a short
time, commercial UAVs might become some sort of mobile
network client devices, like smartphones.

The communications network can be used to restrict UAV
operations at specific areas. These restrictions could be
related to safety (e.g., near an airport), security (near
sensitive government installation), or privacy (flying over
private property), in order to guarantee safe autonomous
flight under local rules of aviation (GSMA, 2019).

In the futuristic configuration discussed, UAVs automatic
control systems will then assume a distributed form, with
part of the controllers on board the aircraft and part re-
mote and integrated to the communications network, char-
acterizing a feedback control system with delay and packet
loss. These will operate by sending control command data
and receiving sensor data by means of a communication
system common to various clients in the same network, so
the demand on such network may adversely affect its qual-
ity and consequently the stability of the control systems
which depend on the network’s performance.

The increase in the delay adversely interferes in the sta-
bility margins of the control-loop, which can lead to in-
stability and the consequent accident of the UAV. For
this reason it is fundamental the study of effective con-
trol techniques for delay compensation and capable of
guaranteeing robust stability margins. Also, since it is
considered as a network distributed control problem of
an ever-increasing number of UAVs, the simplicity and
reliability are of paramount importance, thus requiring the
priority investigation of control techniques widely applied
to industrial systems.

In this context we propose to investigate the application
of a Smith predictor-based adaptive Proportional-Integral-
Derivative (PID) control due to its solid acceptance as
a trustworthy industrial technique. The Smith predictor
can mitigate the network’s latency effects and supply
the feedback control-loop with estimated data whenever
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sensor data packets get lost (Hotchi et al., 2020; Sarkar
et al., 2020). The PID with Smith predictor topology
is well understood within the process control industry
and within the control theory literature, allowing both
analytical and experimental assessment of the robustness
margins (Franklin and Santos, 2020).

The approach to be covered in this paper is to assess a
computationally inexpensive and robust control solution to
attend a great number of UAV clients of a futuristic flight
control network, serving as a low level guidance system,
possibly to work along with machine decision systems on
top of it. In this context, intelligent artificial systems would
monitor the need to interfere in controlling UAVs but the
feedback control of 3D (three dimensional) position and
velocity of network-controlled UAVs would be conducted
by the Smith predictor-based adaptive control system.
In this sense, guidance, navigation and control systems
(GNC) are distributed among the network and UAVs,
and are required to adapt in real-time due to mobility,
atmospheric disturbances and different vehicle’s dynamics.

Adaptive control techniques have been vastly applied in in-
dustrial process control (Astrom and Wittenmark, 2008).
The baseline for such systems is the least-squares paramet-
ric estimation in the recursive and non-recursive forms, in
most cases. One particular similarity between networked
UAV control and some industrial process control is the
existence of time delays in the control-loop. Such a delay is
associated to the time a control command takes to modify
the process output and the time the sensor data takes to
be fed back to the controller. In the UAV case the total
delay might be further increased due to signal processing
stages and network traffic.

In Fig. 1 we show a simplified diagram of a network-
controlled quadrotor system. Observe the network envi-
ronment, in the middle, between the quadrotor and a
remote computer station. Such environment is a non-linear
and time-varying dynamical system dependent on so many
considerations that we must left aside in order to keep in
the planned track of this work. The Quadrotor block is also
an extremely complex dynamic system. Thus, to view such
combined complex systems from the perspective of control
system design, we assume the combination as depicted by
the single Networked-Quadrotor Dynamics block, modeled
as a multi-input multi-output (MIMO) process with a
bounded maximum time delay.

Figure 1. Block diagram of an autonomous networked-
quadrotor control system.

Within the considered scenario we propose to contribute
by presenting the following experiments:

• Assess a Smith predictor-based approach to deal with
networked control of UAV under time delay and
packet loss.

• Evaluate how the Smith predictor deals with stochas-
tic disturbances affecting the UAV 3D position and
velocity.

• Analyze how the proposed adaptive control approach
adapts within the considered scenario and how it
manages robustness assessment in real-time when the
network’s performance degrades.

Beyond this introductory part this paper is organized
as follows: in Section 2 a Networked-Quadrotor MIMO
process is described and the 3D position and velocity
control problems are presented; in Section 3 the Smith
predictor approach is discussed and followed by the digital
self-tuning PID controller and its robustness assessment; in
Section 4, simulations are assessed comparing the proposed
control approach in face of conventional self-tuning PID;
the adaptive control robustness is evaluated and confirmed
under stochastic disturbances, increased network latency
and packet loss; finishing with the Conclusions.

2. NETWORK-CONTROLLED UAV MODEL

Consider the non-singular, controllable and observable
quadrotor’s MIMO discrete-time stochastic system model

x(k) = Ax(k − 1) +Bu(k − d) + Γw(k − 1), (1)

y(k) = Cx(k) + v(k), (2)

where x(k) ∈ Rn is the vector of n state variables, u(k) ∈
Rnu is the vector of nu inputs, y(k) ∈ Rny of ny outputs,
w(k) ∈ Rn and v(k) ∈ Rny are Gaussian disturbance
vectors with respectively σ2

w1
, . . . , σ2

wn and σ2
v1 , . . . , σ

2
vny

variances. The A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n,
Γ ∈ Rn×n are the matrices of the system and d ≥ 1 is
the discrete-time delay.

Equations (1) and (2) describe part of the simulation
model of the UAV considered in this work. Its parameters
are available in the work of Silveira et al. (2020) respective
to the UAV’s dynamics from the perspective of a remote
control station as depicted in Fig. 1. The system’s state
vector is comprised of eight state variables,

xT = [ φ θ uvel vvel ψ r h wvel ] , (3)

designating, from left to right, the roll angle [rad], pitch
angle [rad], vehicle’s longitudinal velocity [m/s], lateral
velocity [m/s], compass heading/yaw angle [rad], yaw rate
[rad/s], altitude [m] and vertical velocity [m/s].

The time delay d in (1) is time-varying but assumed to be
known and bounded. Also, control commands and sensor
data have a probability Ploss of getting lost. In case of
data sample loss, last data is repeated: y(k) = y(k − 1).
The sampling time is fixed at 65 ms.

The UAV body-fixed orientation adopted is the x̄, ȳ, z̄
axes in the North-East-Down NED system, in which a
right-handed rotation about the x̄-axis gives positive roll;
about the ȳ-axis gives positive pitch; about the z̄-axis gives
positive yaw (Stevens et al., 2016).

The input vector of the system in (1) is given by

uT = [ uv uu uψ uw ] , (4)

where all inputs are dimensionless and defined in the range
of [−1, 1]. These inputs are respective to, from left to
right: the lateral thrust, longitudinal thrust, yaw thrust
and vertical thrust.
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The MIMO networked-quadrotor control system consid-
ered encompasses six subsystems indexed by i = 1, . . . , 6.
The first four are directly actuated by (4) and, in order,
define the following control problems: 1. body-fixed lateral
velocity (y1 = vvel) control, 2. body-fixed longitudinal
velocity (y2 = uvel) control, 3. yaw angle (y3 = ψ) control
and 4. altitude (y4 = h) control. The remainder two are
cascade control problems, posed as outer loops dependent
on the first two and defined as: 5. longitude position
(y5 = plon) control, 6. latitude position (y6 = plat) control.

The design of all i = 1, . . . , 6 control systems are based on
single-input, single-output, time-varying, estimated trans-
fer function models, Gi(k, z

−1), of the form

Ai(k, z
−1)Yi(z

−1) = Bi(k, z
−1)z−dUi(z

−1), (5)

Ai(k, z
−1) = 1 + ai1(k)z−1 + · · ·+ aina (k)z−na , (6)

Bi(k, z
−1) = bi0(k) + bi1(k)z−1 + · · ·+ binb (k)z−nb , (7)

where Yi(z
−1) refers to the outputs and Ui(z

−1) to the
inputs, both subjected to time-varying Ai(k, z

−1) and
Bi(k, z

−1) polynomials defined in the backward shift op-
erator domain, z−1. The polynomials in (5) are estimated
online and on demand by the respective i = 1, . . . , 6
adaptive controllers. Thus, (1) and (2) define the body-
fixed simulation model and (5) the controller design model.

A navigation system model is required in order to allow
the UAV position control with respect to an external
fixed reference frame, i.e., the Earth. By integrating the
velocities given in terms of the external fixed reference
frame we can obtain the longitude and latitude position of
the UAV. In Fig. 2 we present how the quadrotor’s NED
body-fixed velocities can be decomposed into an Earth-
fixed Cartesian longitude and latitude coordinate system.

Figure 2. Quadrotor’s North-East-Down body system ve-
locities with respect to a Cartesian latitude and lon-
gitude coordinate system.

From the diagram in Fig. 2 a transformation matrix
dependent on the compass heading angle y3 = ψ can be
obtained:

M =

[
cos[y3(k)] sin[y3(k)]
− sin[y3(k)] cos[y3(k)]

]
. (8)

Then, body-fixed velocities can be converted into Earth’s
reference frame velocities, longitudinal (vlon) and latitudi-
nal (vlat), given by:

vE(k) =

[
vlon(k)
vlat(k)

]
= M

[
y1(k)
y2(k)

]
(9)

The inverse of the transformation matrix M ,

M−1 =

[
cos [y3(k)] − sin [y3(k)]
sin [y3(k)] cos [y3(k)]

]
, (10)

can be used to obtain the corresponding body system
velocities from Earth’s Cartesian coordinate system:[

y1(k)
y2(k)

]
= M−1

[
vlon(k)
vlat(k)

]
(11)

By applying the Backward difference approximation to
the problem of integrating velocities in order to obtain
the position, the UAV position given in Earth’s reference
system, pE , is incremented based on updated velocities:

pE(k) =

[
plon(k)
plat(k)

]
= pE(k − 1) + TsvE(k), (12)

where y5 = plon, y6 = plat and Ts is the sampling time in
use within the guidance and navigation systems.

Equations (8) to (12) can also be used to transform 3D
position reference information from Earth’s coordinate
system to the body-fixed coordinate system and vice-versa
in order to be used as reference signals for the guidance
controllers.

3. SMITH PREDICTOR-BASED ADAPTIVE
CONTROL

In the 1950s Otto J. M. Smith proposed a closed-loop
predictor structure for open-loop-stable processes as de-
picted in Figure 3. The key element in Smith’s structure
was the simplicity in which a delay-free observer Ḡi(z

−1)
was used in order to produce a predicted output ŷi(k+d).
Then, ideally, the controller Ci(z

−1) would work d-steps
ahead so to move ŷi(k + d) towards the reference ri(k).
And, if the main difference between the observer and the
real process Gi(z

−1) is the time delay, then the prediction
error epi(k) = yi(k) − ŷi(k) would be null, leading to
the compensation of the delay’s effects on the closed-loop
stability margins.

Figure 3. Block diagram of a PID control-loop with the
Smith Predictor.

Assuming the parameters from (5) could be estimated
online and that d is an accessible network parameter, then
a delay-free observer can be adapted in real-time so to
cope with Smith’s strategy. The recursive least-squares
estimator was selected for this task since its application
is straightforward:

Li(k) =
Pi(k − 1)φi(k)

1 + φi
T (k)Pi(k − 1)φi(k)

, (13)

θi(k) = θi(k − 1) + Li(k)
[
yi(k)− φiT (k)θi(k − 1)

]
,

(14)

Pi(k) =
[
I − Li(k)φi

T (k)
]
Pi(k − 1). (15)
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These last three equations are respective to the estimator’s
gain, parameters vector and the estimation error covari-
ance matrix. Present in all these equations is φi(k), known
as the vector of output and input regressors. Smith’s pre-

dicted output may also have its own φ̂i(k) adopting non-
delayed input regressors and the most recent estimated
parameters, such that

ŷi(k + d) = φ̂Ti (k)θi(k) (16)

Thus, these results can be directly applied to the control
strategy as it follows:

ui(k) = Ci(k, z
−1)ei(k) (17)

ei(k) = ri(k)− yi(k) + ŷi(k)− ŷi(k + d) (18)

Considering the PID control law in the continuous fre-
quency domain and in its parallel form,

Ui(s) =

(
KiP +

KiI

s
+KiDs

)
Ei(s). (19)

KiP , KiI , KiD , are, respectively, the proportional gain,
the integral and derivative gains, used to tune the control-
loop. By applying the Backward-difference approximation
s := (1 − z−1)/Ts to (19), the following digital PID is
defined:

Ui(z
−1) =

(si0 + si1z
−1 + si2z

−2)

(1− z−1)
Ei(z

−1) (20)

si0 = KiP +KiITs +
KiD

Ts

si1 = −KiP − 2
KiD

Ts

si2 =
KiD

Ts

(21)

In order to adapt Ci(k, z
−1), a model-based tuning pre-

sented by Castro et al. (2019) is considered. The method
applies only for open-loop stable systems and consists
in adapting the controller so to guarantee the following
closed-loop reference model dynamics:

Yi(z
−1)

Ri(z−1)
=

(1− e−
Ts
τi )z−1

1− e−
Ts
τi z−1

. (22)

The free parameter is τi, that corresponds to the time
constant or the cut-off frequency ωi = 1/τi of the system
in (22). This tuning technique is based on a second-
order discrete-time system model and it is self-tuned after

θi(k) = [ ai1(k) ai2(k) bi0(k) bi1(k) ]
T

innovations:

si0(k) =
1− e−

Ts
τi

bi0(k) + bi1(k)

si1(k) = si0(k)ai1(k)

si2(k) = si0(k)ai2(k)

(23)

Alternatively, the adaptive PID gains are as follows:

KiP (k) = −si1(k)− 2si2(k)

KiI (k) =
si0(k) + si1(k) + si2(k)

Ts
KiD (k) = si2(k)Ts

(24)

Among the six i = 1, . . . , 6 control systems, the last two
were linked in a cascaded manner as outer loops around

the first two. In this sense, the outputs of (12) are fed back
to the following guidance proportional controller:[

u5(k)
u6(k)

]
=

[
K5P
K6P

]
M−1

[
r5(k)− y5(k)
r6(k)− y6(k)

]
. (25)

Their control signals serve, in fact, as reference signals
to the body-fixed lateral and longitudinal controllers:

[ r1(k) r2(k) ]
T

= [ u5(k) u6(k) ]
T

.

Since self-tuning controllers adapt in real-time, then stabil-
ity and robustness analyses must accompany and adapt as
well. However, frequency domain analysis towards asymp-
totic stability verification or gain and phase margins cal-
culations in real-time may require specialized software de-
velopment libraries and more computer processing power
and memory. Thus, a time-based robustness index for self-
tuning control is considered (Silveira et al., 2012):

RIi(k) =

∣∣∣∣∣ k∑j=0

ŷi(j)−
k∑
j=0

yi(j)

∣∣∣∣∣∣∣∣∣∣∣∣∣
k∑
j=0

ŷi(j)
k∑
j=0

Si(k,z−1)ri(j)

k∑
j=0

Si(k,z−1)yi(j)

∣∣∣∣∣∣∣∣
, (26)

where Si(k, z
−1) is a time varying polynomial comprised

of the elements shown in (23). If RIi(k) < 1, then the
adaptive control-loop is said to be robust at time k.

4. SIMULATIONS RESULTS

To refer to the Smith predictor-based adaptive controller,
the acronym SPAC will be used henceforth.

The first four controllers were tuned using [ τ1 τ2 τ3 τ4 ] =
[ 1 1 3.6 1.3 ]. Initial covariance matrices Pi and parame-
ters θi were estimated and used to initialize the SPAC and
then its PID gains were adapted in real-time so to force the
closed-loop system to behave as in (22), while the other two
guidance systems were set with [K5P K6P ] = [ 1 1 ]. The
nominal time delay of the UAV was 195 ms (d = 3) when
the network performance was also nominal. In a worst case
scenario it was assumed a maximum time delay of 975
ms (d = 15) and a packet dropout probability of 30%
along with atmospheric disturbances and sensor noise, as
modeled in Silveira et al. (2020).

SPAC τi’s were tuned after evaluations of the step re-
sponses in the nominal scenario. In Fig. 4 it is shown the
step responses and the control signals for the i = 1, 2, 3, 4
systems. The selected τi’s guarantee that all control signals
respect the saturation limits of [-1,1] when an abrupt
step-like reference is required. However, it is important
to highlight that the guidance system controls the UAV
from a departure waypoint to the next along a predefined
trajectory, like an airway, so the step-like references may
be abrupt but of small values, since the planned path is
supposedly to be continuous between waypoints.

The SPAC closed-loop behavior was also assessed in a more
complex scenario of 975 ms delay (d = 15) and with a
packet dropout probability of 30%. The results are shown
in Fig. 5, where it is possible to observe that, despite the
adverse scenario, the controller handled its task robustly,
as confirmed in Fig. 6 where all RIi , i = 1, 2, 3, 4, were kept
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(b) UAV heading and altitude control.

Figure 4. SPAC assessed in the nominal scenario.

bellow the unity threshold. On the other hand, in Fig.
7, a similar adaptive PID, but without SPAC, exhibited
stability degradation with highly oscillatory lateral and
longitudinal velocities.

The SPAC was also assessed in a 3D trajectory tracking
essay under the worst case scenario, which incorporates
atmospheric disturbances and sensor noise, along with
the previous evaluated case of 975 ms delay and packet
dropout probability of 30%. The planned reference trajec-
tory was an ascending spiral since it poses some additional
difficulties than tracking straight lines. The results are
shown in Fig. 8, where in (a) the 3D trajectory tracking
is nominal and (b) it is in worst case scenario. In this
last case, during the initial phase of the mission, the
UAV trajectory dispersion was large since SPAC was still
adapting. However, in the long run, SPAC proved to be
stable and robust. The result without SPAC is not shown
due to space limitations, but the UAV became unstable
under simulated atmospheric disturbances along with the
975 ms time delay and 30% packet loss probability.

CONCLUSIONS

In this work, a Smith predictor-based adaptive GNC sys-
tem was investigated with focus on network-controlled
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(b) UAV heading and altitude control.

Figure 5. SPAC under 975 ms time delay and 30% packet
loss probability (red spikes denote packet drops).
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Figure 6. SPACs robustness indices (975 ms time delay
and 30% packet loss probability).

UAVs. It was assumed a futuristic scenario of an ever
increasing number of aerial vehicles in populated zones,
all within a supervised flight control network dependent on
the communications network performance. The proposed
control approach was based on reliable industrial tech-
niques, such as the Smith predictor and self-tuning PID
control, so to cope with a trustworthy and computationally
inexpensive approach. The average loop-time of the com-
plete GNC for a single UAV was 0.23 ms. The algorithm
was tested with MATLAB R2018a in Ubuntu 18.04.5 LTS
on an Intel i5-4200U CPU 1.60GHz and 4GB RAM. The
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(a) UAV velocities control without SPAC.
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(b) UAV heading and altitude control without SPAC.

Figure 7. Without SPAC, 975 ms time delay and 30%
packet loss probability (red spikes denote packet
drops).

simulated results confirmed the proposed GNC system to
be robust under the complex scenario of increased time
delay, packet dropout probability of 30% and robust to
atmospheric and sensor noise disturbances.
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