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Emails: leilicunha@ufpa.br, anderson.silva@ifpa.edu.br, asilveira@ufpa.br,

walbarra@ufpa.br

Abstract— This paper presents the design of a proportional-derivative controller (PD controller) by means
of the theory of polynomials with interval roots, and applies them to the problem of robust pole placement
technique for an interval system represented by a DC motor. It is formulated a optimization problem by Linear
Programming approach integrated with the Chebyshev theorem, which incorporates additional constraints on
the system and desired performance parameters and allow the designer to find the controller parameters that
place closed-loop poles within desired intervals for plants with parameter uncertainties. The design purpose is
the minimization of the overall deviation from the desired performance for the closed loop system, as specified
by a characteristic polynomials family. For performance comparison, it was designed a classic PD controller and
the results shows the good performance.
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1 Introduction

Throughout the evolution of the studies of closed
loop systems, the Control Theory has been pro-
viding tools for solving problems in various fields
of humanity. Within the context of solutions for
process control, one of the areas that have received
great research efforts from the scientific commu-
nity is Robust Parametric Control (RPC) The-
ory, that emerges as a set of modern control tech-
niques whose objective is to avoid the negative
effects caused by the uncertainties present in the
system parameters (Barmish and Jury, 1994). The
RPC gained greater attention from academia since
the 1980s and this academic ”boom” was originate
as a result of Kharitonov’s work, who developed
the so-called seminal Kharitonov stability Theo-
rem. Among the several methods of solution to
the problem of controlling plants with parametric
uncertainties, in the present paper, are highlighted
the use of Linear Programming (LP) approach
(Keel and Bhattacharyya, 1999) and the Cheby-
shev Theorem (Boyd and Vandenberghe, 2004).
This methods, when combined, serve to design op-
timal and robust controllers.

In this paper, a design trend is presented
for Proportional-Integral-Derivative (PID) con-
trollers family and is based on parametric robust
control theory. The controller designed is applied
for asymptotic tracking of a motor DC and is
expected to reduce the control effort when the
system is operating outside its nominal operat-
ing point. The motivation arises from the diffi-
culty of relating parametric robust control theory

to conventional design methods. In conventional
methods, the goal is to design a controller with fix
parameters from a plant with fix parameters too.
However, robust parametric control presents a dif-
ferent form of controller development, in which
the modelling of the systems is developed with
the plant parameters represented by real intervals
(not fix). From the method presented by Keel and
Bhattacharyya (1999), it is possible to develop
controllers designs in the interval domain and still
with fix parameters. The reason for choosing the
controllers of the PID family is justified by the fact
that it is the most popular controller in the indus-
trial environment (Åström and Hägglund, 2006).

In the context of the work involving robust
parametric control theory and PID controllers
family, several theoretical and practical contribu-
tions can be cited. One can cite as an example
the works of Keel and Bhattacharyya (1997) and
Keel and Bhattacharyya (1999), in which a linear
programming approach was used to provide nec-
essary conditions on the fixed order controller de-
sign for robust stability of the closed loop systems.
In Cunha et al. (2016), the design of a robust
controller via linear programming is presented in
comparison to a conventional design technique ap-
plied to the position control of a motor DC. In
both works, only linear programming approach is
used to solve the optimization problem proposed
for optimal tuning of the controllers parameters.
In de França Silva et al. (2016), the design and
evaluation of an robust interval controller applied
to the speed regulation problem of a synchronous
generator is presented.



Following the same line of work cited and in
view of the practical and theoretical contributions
of the RPC combined with conventional control
techniques, in this paper, the linear programming
approach presented in Keel and Bhattacharyya
(1999) is combined with the Chebyshev Theorem,
given in Boyd and Vandenberghe (2004), for op-
timal tuning of the robust controller parameters,
providing better performance, besides that, the
robust controller design with robust stability guar-
anteed according to Kharitonov Theorem is pre-
sented. Another difference presented in the design
developed in this paper is the possibility of syn-
thesizing digital controllers through a digital mask
for analogical controllers, ensuring lower degrada-
tion of the digital controller performance designed.
One advantage of this approach is that it allows
us to pick a controller that is itself robust.

2 Robust Stability Analysis

A system with parametric uncertainties is gener-
ally described by uncertain polynomials N(s, n)
and D(s, d), restricted within pre-specified closed
real intervals, according to (1) (Barmish and
Jury, 1994; Bhattacharyya and Keel, 1995).

G(s, n, d) =
N(s, n)

D(s, d)
=

∑m
i=0 [ni

−, ni
+] si∑n

i=0

[
di
−, di

+
]
si

(1)

Many robust stability tests under paramet-
ric uncertainty are based on analysis of uncertain
characteristic polynomial assumed as a interval
polynomial family (Barmish and Jury, 1994), such
as

P (s, a) =
∑n

i=0

[
ai
−, ai

+
]
si (2)

According to (2), it is noted that the polyno-
mial P (s, a) is stable if all its roots remain con-
tained on the left hand side of the complex plane.
Then, P (s, a) is robustly stable if all its polyno-
mials are stable for a set of operating point differ-
ent from nominal operation point, since it respect-
ing their minimum and maximum limits (Keel and
Bhattacharyya, 1997). However, instead of check-
ing stability of an infinite number of polynomials
we just have to check stability of four polynomi-
als, which can be made using the Kharitonov The-
orem.

2.1 Kharitonov Stability Theorem

The Kharitonov Theorem deals with the robust
stability analysis of uncertain (interval) polyno-
mials. In particular, it gives a computationally
feasible algorithm for testing of stability by means
of four fixed polynomials if the roots of P (s, a) re-
main contained on the left hand side of the com-
plex plane (Barmish and Jury, 1994).

Thus, an interval polynomial family P (s, a)
with invariant degree is robustly stable if and
only if its four Kharitonov polynomials, given in
(3), are stable (Barmish and Jury, 1994; Bhat-
tacharyya and Keel, 1995)(i.e. they have all their
roots in the left hand side of the complex plane).

K1(s) = a−0 + a−1 s+ a+2 s
2 + a+3 s

3 + a−4 s
4 + a−5 s

5 + a+6 s
6 + ...

K2(s) = a+0 + a+1 s+ a−2 s
2 + a−3 s

3 + a+4 s
4 + a+5 s

5 + a−6 s
6 + ...

K3(s) = a+0 + a−1 s+ a−2 s
2 + a+3 s

3 + a+4 s
4 + a−5 s

5 + a−6 s
6 + ...

K4(s) = a−0 + a+1 s+ a+2 s
2 + a−3 s

3 + a−4 s
4 + a+5 s

5 + a+6 s
6 + ...

(3)

2.2 Robust Pole Placement Design

In this paper, the robust controller design uses
two different procedures. The first is the tool de-
veloped in Keel and Bhattacharyya (1999), asso-
ciated with a linear goal programming formula-
tion, which will lead to a set linear inequality con-
straints. The second procedure is the Chebyshev
theorem, developed in Boyd and Vandenberghe
(2004), which provides a maximum stability re-
gion, characterized by a ball of center xc and ra-
dium R, whose norm is Euclidean.

Thus, it is possible obtain a controller C(s)
of order r, given in (4), able to ensure the robust
stability of the uncertain systems G(s, q) of order
n, given in (5), according to Figure 1, where yr,
u and y are, respectively, the reference signal, the
control signal and the system output.

Figure 1: General system structure

G(s, q) :=
nns

n + nn−1s
n−1 + ...+ n0

dnsn + dn−1sn−1 + ...+ d0
(4)

C(s) :=
ars

r + ar−1s
r−1 + ...+ a0

brsr + br−1sr−1 + ...+ b0
(5)

Where q := (n, d) and n−i ≤ ni ≤ n
+
i and

d−i ≤ di ≤ d
+
i for i = 0, 1, ..., n. Therefore, the

closed loop characteristic polynomial is

Gmf (s) =
G(s)

1 + C(s)G(s)
=
Nmf (s)

Dmf (s)
(6)

The goal here is to displace the poles of
Gmf (s), or equivalently, the roots of Dmf (s) to a
desired region δ(s), whose robust controller must
be chosen to satisfy such desired region. Thus,
let us now introduce a desired (or target) charac-
teristic polynomial δ(s) of degree n + r, which is
stable and has the desired set of the closed loop
characteristic roots, as in (7).

δ(s) = δn+rs
n+r + δn+r−1s

n+r−1 + ...+ δ0 (7)



For robustness purposes, it is relaxed the re-
quirements of attaining the target polynomial ex-
actly and it is enlarged the target to a box in coef-
ficient space containing the point representing the
original desired characteristic polynomial. This
corresponds to the choice of an interval desired
polynomial family as the target rather than a sin-
gle point. Therefore, suppose that (7) is described
by the interval vector [δi] =

[
δ−i , δ

+
i

]
and consider

that Dmf (s) = δ(s) to guarantee robust stability.
According to Keel and Bhattacharyya (1999), for
the controller design it is necessary and sufficient
to solve the set of linear inequations constraints
given in (8).
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(8)

Or equivalently

bimin ≤ Aixc ≤ bimax (9)

Where xc is the vector with the robust con-
troller parameters, to be optimized, bimin and
bimax are respectively the linear inequalities con-
straints relative to lower and upper limits of the
system. The array Ai corresponds to open loop
plant coefficients.

2.3 Chebyshev Theorem

The Chebyshev Theorem says that it is possible to
find the largest ball B of center xc and maximum
radius R, whose norm is Euclidean, which is con-
tained in the politope P , described by the set of
linear inequalities constraints. The ball center xc
is called Chebyshev Center, as shows the Figure 2
(Boyd and Vandenberghe, 2004).

Figure 2: Largest ball B inscribed in P

When the set P is convex, the comput-
ing of xc become a convex optimization prob-
lem. More specifically, suppose P ⊆ Rn is de-
fined by a set of convex inequalities, i.e., P =
{ aix ≤ bi, i = 1, ...,m }. If R ≥ 0, one can find
xc by solving the PL given in (10) (Boyd and Van-
denberghe, 2004), with variables x and R.

maximize R
Subject to
aix+R‖ai‖2 ≤ bi; i = 1, ...,m

R ≥ 0

(10)

By assuming the (9) is linear or affine in the
vector xc and the PL techniques covered in detail
in Boyd and Vandenberghe (2004), the robust pole
placement technique reduces to a PL combined to
the Chebyshev Theorem, as shown in (11).

maxF (xc, R)
subject to
Aixc + ‖a‖R ≤ bi

(11)

Where:

Ac =

 Ai ‖a‖
−Ai ‖a‖
01×i −1

 , bi =

[
bimax

−bimin

]
, Bc =

[
bi
0

]
(12)

The vector x =
[
xc R

]T
represents the

parameter array to be optimized. F (xc, R) is an
arbitrary linear function in xc and R and ‖a‖ is
the Euclidean norm of coefficients of Ai.

3 Digital Controller Design Based on
analogical Controller

Considering the analogical PID controller be de-
fined by

u(t) = Kpe(t) +Ki

∫
e(t)dt+Kd

de(t)

dt
(13)

where Kc, Ki and Kd are PID gains and e(t) is the

system error. According to Åström and Hägglund
(2006), the analogical PD controller is obtained
by considering Ki = 0, i.e.,

u(t) = Kpe(t) +Kd
de(t)

dt
(14)

According to Åström and Hägglund (2006),
the digital PD controller is obtained by consider-
ing that the derivative part in (14) would be the
error variation within a range dt := Ts, where Ts
is sampling time, such as

u(k) = Kpe(k) +
Kd

Ts
[e(k)− e(k − 1)] (15)

So, rewriting (15), we have the control law of
the digital PD controller, as shown in (16).

u(k) =

[
Kp +

Kd

Ts

]
e(k)− Kd

Ts
e(k − 1) (16)



3.1 Motor DC System Modelling

The technique presented was experimentally eval-
uated in the position control of a DC motor with
constant field electric current coupled to a load
through two gears, as in (17), whose parameters
values are presented in the Table 1 (Hamrick and
Lordelo, n.d.).

θ(s)
Ea(s)

= Kt

(Lab1eq+RaJ1eq)s2+(Rab1eq+KtKb)s

(17)

Where J1eq = J1 +
(
n1

n2

)2
× (J2 + Jl), B1eq =(

n1

n2

)2
× b2 and Jl = 0.5ρπr4h. In the equation

(17), the angular position θ(s) is considered the
output and the armature voltage Ea(s) is consid-
ered the input of the system.

Table 1: DC Motor Parameters

Parameters Symbols Values

Armature Resistance Ra 33Ω

Armature Inductance La 0.00169H

Motor Torque Constant Kt 0.0283Nm/A

Electromotive force constant Kb 0.0283V s/rad

Motor inertia moment 1 J1 1.06 × 102kgm2

Motor inertia moment 2 J2 1.06 × 102kgm2

Motor shaft viscous friction 1 b1 5.8 × 106kgm2/s

Motor shaft viscous friction 2 b2 5.8 × 106kgm2/s

Number of gear teeth 1 n1 100

Number of gear teeth 2 n2 300

Load Disc Radius r 0.0254 m

Mass Density of Aluminium ρ 2702 kg/m3

Load disk density h 0.00635m

3.2 Robust PD Controller Design

By replacing the parameter values in the Table 1
into (17) and admitting a variations of ±10% in
the parameters Ra and h, such as [Ra] = [30, 36]
and [h] = [0.00635, 0.00762]m, we have

θ(s)

Ea(s)
=

[
b−0 , b

+
0

]
s2 +

[
a−1 , a

+
1

]
s

(18)

or equivalently

θ(s)

Ea(s)
=

[294, 0376; 389, 1290]

s2 + [8, 3213; 11, 0124] s
(19)

This paper aims to obtain the digital PD con-
troller parameters from the analogical PD con-
troller parameters, if it exists, so that the closed
loop system satisfies the desired performance spec-
ification. So, by considering the analogical PD
controller in (14) in the frequency domain be of
the form

C(s) = Kp +Kds (20)

we define the analogical PD Controller parameters
vector to be xc =

[
Kd Kp

]
. The desired per-

formance specifications for the transient response
was an interval overshoot [Mp] = [6, 14] % cen-
tered in Mpc = 10% and a peak time Tp = 0.4s.

According to Åström and Hägglund (2006), for
a linear second order system one obtains a in-
terval damping factor ζ = [0.5305, 0.6671] , cen-
tered in ζc = 0.5912 and a interval undamped
natural frequency ωn = [9.2653, 10.5430] , cen-
tered in ωnc

= 9.7377, resulting in a inter-
val desired closed-loop characteristic polynomial
(Lordelo and Fazzolari, 2014), given by

δ(s) = s2 +
[
δ−1 , δ

+
1

]
s+

[
δ−0 , δ

+
0

]
(21)

Where
[
δ−1 , δ

+
1

]
= [9.8306, 14.0671] and[

δ−0 , δ
+
0

]
= [85.8450, 111.1555]. Now consider the

closed loop system characteristic polynomial given
by

Dmf (s) = s2 + (a1 + b0Kd) s+ b0Kp (22)

Note that our purpose is to select Kp and
Kd such that < (Dmf (s)) ⊆ < (δ(s)), where <(.)
denotes the root space of (.) (Keel and Bhat-
tacharyya, 1997). This purpose will be reached
if F (Dmf (s)) ⊆ F (δ(s)), where F(.) denotes the
family of polynomials. Therefore, replacing inter-
val parameters by their vertices and after simpli-
fication by eliminating redundant inequalities, we
construct the following set of linear inequalities
that the controller parameter xc should satisfy.
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1
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+
1

δ−1 − a
−
1

δ−1 − a
+
1

δ−0
δ−0
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b−0 0
b−0 0
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b+0 0
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Kd
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]
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δ+1 − a

−
1

δ+1 − a
+
1

δ+1 − a
−
1

δ+1 − a
+
1

δ+0
δ+0


(23)

Thus, by replacing interval parameters values
and solving the linear goal programming problem
given in (11), it is obtained the robust analogical
PD controller, given in (24),

C (s) = 0.1491 + 0.0076s (24)

which satisfies the prescribed constraints on
the system and desired performance parameters.
Therefore, by using (16), it is obtained the robust
digital PD controller, given by

u(k) = 0.3005e(k)− 0.1514e(k − 1) (25)



4 Results

4.1 Robust Stability Analysis

The robust stability analysis of the closed loop
system it was made by means of the four
Kharitonov polynomials stability analysis, given
in the section 2.1, as shows the Table 2, whose
roots are presented in the Figure 3.

Table 2: Four fixed Kharitonov polynomials

Robust Classic

K1(s) s2 + 10.55s+ 43.85 s2 + 10.06s+ 82.87

K2(s) s2 + 13.96s+ 58.03 s2 + 13.32s+ 109.7

K3(s) s2 + 10.55s+ 58.03 s2 + 10.06s+ 109.7

K4(s) s2 + 13.96s+ 43.85 s2 + 13.32s+ 82.87
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Figure 3: Four Kharitonov polynomials Pole Map

According to Table 2, it is noted that the two
controllers provide robust stability, because it pro-
vide internal stability for all interval polynomial
family, given in (19). Thus, the closed loop sys-
tem is robustly stable because all its polynomials
in this family have all their roots in the left hand
side of the complex plane, as can be seen in the
Figure 3.

4.2 Tracking Tests

For dynamic performance analysis, it was applied
a step signal on the system input and compared
with a classic PD controller designed by means of
the classic pole placement technique. The Figure
4 to Figure 6 present the dynamic performance
of closed loop system output and control signal
with the two controllers (classic and robust) for
the tracking asymptotic considering three opera-
tion points (lower-nominal-upper).

According to Figure 4 to Figure 6, the two
controllers stabilize all interval polynomial fam-
ily, satisfying the desired performance specifica-
tion and the system output asymptotically tracks
a step input in the face of parameter uncertainty.
On the other hand, the robust controller pro-
vide better performance to parametric uncertain-

Time(s)
0 5 10

A
m

pl
itu

de

0

0.5

1

1.5

2

2.5

Lower Output Signal

Reference

Classic

Robust

Time(s)
0 5 10

A
m

pl
itu

de

-0.2

0

0.2

0.4

Lower Control Signal

Classic

Robust

Figure 4: Dynamic performance in closed loop
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Figure 6: Dynamic performance in closed loop

ties in both the output and control signals, since it
reached lower overshoot with lower control signal.

4.3 Performance Index Analysis

The performance of the two controllers is eval-
uated by ”size” of an energy discrete sequence,
which can be computed by a discrete approxima-
tion of the integral of a squared signal, given in
(26), where W is a general vector that may as-
sume to be the error e(k) between the reference
signal yr(k) and the measured output y(k) and the
control signal u for analysing of the control effort,
respectively designated as ISE and ISU within this
work (Silveira et al., 2016).

ISW =
n∑
k=1

(
WTW

)
Ts (26)

The tables 3 and 4 present the performance in-
dex of the two controllers and prove the good per-
formance of the robust controller, because this one



Table 3: Performance Index for Robust PD

Output SignalControl Signal
ISE ISU

Lower 4.2785 0.17284
Nominal 4.0783 0.16857
Upper 3.8905 0.16460

Table 4: Performance Index for Classic PD

Output SignalControl Signal
ISE ISU

Lower 3.6164 0.37864
Nominal 3.3793 0.36003
Upper 3.1567 0.34260

apresents lower control effort (ISU) to the three
operation points, although presents bigger energy
for tracking the reference signal yr(k), calculated
by ISE. This was necessary for providing the lower
overshoot presented.

5 Conclusions

In this paper, it was presented the robust con-
troller design of fixed dynamic order for an un-
certain system containing parameter uncertainty.
The design it was realized by matching two design
approaches to robust controllers which robustly
place the desired closed loop poles, so that sta-
bility and robust performance are attained. The
desired closed loop specifications considered were
given in terms of a target performance vector rep-
resenting a desired closed loop design and by en-
larging the target from a fixed point set to an in-
terval set the solvability conditions were relaxed
and a solution was enabled.

The robust controller designed it was applied
to tracking the angular position of a motor DC
and compared with a PD controller designed by
using classical pole placement technique. Through
the results presented, it possible to note that the
two controllers ensured the system robust stabil-
ity and both presented a good performance when
occur variations in the system parameters. The
performance index analysis of the two controllers
were presented to show the efficiency of robust
controller. From these considerations, some con-
clusions can be highlighted:

• By means of the output signal and control
signal analysis, it is possible to conclude that
the system controlled by the robust PD con-
troller presents smaller overshoot and per-
forms smaller control effort.

• The technique presented devise a computa-
tionally simple linear programming approach
that attempts to meet the desired closed

loop specifications, because it does not re-
quire high computational efforts. The tech-
nique can be applied to industrial applica-
tions whose plant model presents parameter
uncertainties. By converting from analogical
to digital time, it was possible to obtain a
digital controller with a good performance.

• To future works, is proposed a robust con-
troller design law direct from in the digital
domain. By this way, we hope to improve
the performance of the controller.
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